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Abstract
The optimization of geometries for aerodynamic design often relies on a large number of expensive simulations
to evaluate and iteratively improve the geometries. It is possible to reduce the number of simulations by pro-
viding a starting geometry that has properties close to the desired requirements, often in terms of lift and drag,
aerodynamic moments and surface areas. We show that generative models have the potential to provide such
starting geometries by generalizing geometries over a large dataset of simulations. In particular, we leverage
diffusion probabilistic models trained on XFOIL simulations to synthesize two-dimensional airfoil geometries
conditioned on given aerodynamic features and constraints. The airfoils are parameterized with Bernstein
polynomials, ensuring smoothness of the generated designs. We show that the models are able to generate
diverse candidate designs for identical requirements and constraints, effectively exploring the design space to
provide multiple starting points to optimization procedures. However, the quality of the candidate designs de-
pends on the distribution of simulated designs in the dataset. Importantly, the geometries in the dataset must
satisfy other requirements and constraints that are not used in conditioning of the diffusion model, to assure
that the generated designs are physical.
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NOMENCLATURE

Symbols

α Angle of attack

B Bernstein polynomial

b Bernstein basis polynomial

C Coefficient

f Features

I Identity matrix

T Maximum time step

N1 First shape coefficient

N2 Second shape coefficient

ϵ Noise

N Normal distribution

z Normal sample

θ Neural network parameters

q Dataset sampling function

Re Reynolds number

x Sample

t Time step

β Variance

A Bernstein polynomial coefficient

y Height

Subscripts

D drag

l lower

max Maximum

M moment

u upper

L lift

Abbreviations

CFD Computational Fluid Dynamics

DPM Diffusion Probabilistic Model

GAN Generative Adversarial Network

MAPE Mean Absolute Percentage Error

RMdSE Root Median Square Error

RMSE Root Mean Square Error
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1. INTRODUCTION

Aerodynamic shape optimization often involves a
large design space, which allows for more detailed
and thus more efficient final designs. At the same
time, larger design spaces are more tedious to
explore because evaluations of designs rely on com-
putationally expensive Computational Fluid Dynamics
(CFD) simulations. As exploring the entire design
space is practically infeasible, both gradient-based
and gradient-free optimization methods rely on repet-
itive simulations of intermediate designs to iteratively
improve aerodynamic shapes [1]. The number of
simulations is only increased when additional dis-
ciplines besides aerodynamics are considered in
a multi-disciplinary optimization procedure, as this
might lead to evolving aerodynamic requirements and
constraints due to its multi-objective nature.
Fortunately, recent advances in machine learning
methods promise to accelerate aerodynamic shape
optimization methods [2]. One class of methods aims
to create a reduced representation of the design
space, also termed a latent space. The rationale is
that most combinations of parameters lead to non-
physical designs, so that only a portion of the design
space is useful. For example, it is possible to deduce
a compressed design space from a set of existing
feasible designs [3, 4]. Another class of methods
rather focuses on reducing the computational cost of
shape evaluations, for example by building surrogate
models of high-fidelity simulations [5]. Both these
methods have successfully been combined, leading
to rapid aerodynamic shape optimization [6].
One common caveat of these methods is that they
do not modify the iterative nature of the optimization
procedure. This not only means that optimization pro-
cedures must be repeated whenever requirements
change, but iterative optimization procedures are
often sensitive to starting conditions and the defi-
nition of the objective function so that convergence
is not necessarily guaranteed. An approach that
promises to alleviate these issues is deep generative
design, which uses machine learning methods that
distill information from previous designs to directly
infer new designs [7]. Depending on the accuracy
of the design, it can be used as a final design or
as the starting point for the traditional optimization
procedure.
Deep generative design has already been applied
to aerodynamic shape optimization, in particular to
two-dimensional airfoils. For example, Achour et
al. [8] and Tan et al. [9] use conditional Generative
Adversarial Networks (GANs) to generate airfoils
based on desired performance classes. However,
the generated airfoils are not always smooth. Due to
the sensitivity of aerodynamics to sharp features, this
is problematic and Chattoraj et al. [10] reduce this
issue by adding an additional smoothness objective.
Since only a handful of performance classes are
considered to start the generation, other authors

extend the methods to work with full polars [11] or
with ranges [12].
While using GANs for deep generative aerodynamic
shape design is promising, their training procedure is
unstable and therefore tedious [13]. In the field of
image generation, from which GANs originate, they
have already been superseded by Diffusion Proba-
bilistic Models (DPMs) [14]. Recently, the advantages
of DPMs compared to GANs have also already been
established for topology optimization [15]. Therefore,
it seems beneficial to investigate how well DPMs per-
form on deep generative aerodynamic design.
While the usage of DPMs for geometry generation
has already been investigated in several fields, for ex-
ample to make a general framework [16], to generate
molecules [17] and to generate various objects [18],
their application to aerodynamics remains limited. To
the authors’ best knowledge, their only application to
aerodynamic shape optimization so far still relies on
an iterative optimization procedure to generate air-
foils [19].
Therefore, the objective of this paper is to show that
DPMs can be used for deep generative aerodynamic
shape design. In addition, we will further formalize
the deep generative aerodynamic shape design ap-
proach. Firstly, we will use a smooth parameterization
so that the shapes are inherently smooth. Secondly,
we will show that diverse candidate shapes can be
generated for the same operating conditions. Thirdly,
we will show that the generated shapes are generally
different than those in the training dataset. Lastly, we
provide a systematic way of conditioning the models
to take into account both design constraints and re-
quirements.

2. METHODOLOGY

As an example, the generation of two-dimensional air-
foils is considered. In particular, the task is to gener-
ate airfoil geometries that have a certain lift coefficient
CL, drag coefficient CD and moment coefficient CM

at a specified angle of attack. While this example is
rather simple, the methodology can be extended to
more complex cases such as those considering the
maximum lift CL,max, the lift-to-drag ratio L/D or even
an entire lift polar similar to Nobari et al. [12].

2.1. Diffusion probabilistic models

Diffusion models are originally inspired by nonequilib-
rium thermodynamics [20], but were later more suc-
cessfully applied to image generation [21]. They op-
erate through two processes, of which the first is the
forward process. In the forward process, samples x
of the dataset are taken and Gaussian noise is added
in steps. If at each time step t the variance of the
noise added is βt, the noised samples xt can directly
be determined in the closed form given in Eq. (1):

(1) xt =
√
ᾱtx0 +

√
1− ᾱtϵ.
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Here ϵ ∼ N (0, I) is Gaussian noise, αt = 1 − βt and
ᾱt =

∏t
s=1 αs. At the end of the forward process, at

some time step t = T , the samples xT are diffused so
much that they are essentially Gaussian noise. When
the original samples are parameters describing fea-
sible airfoils, the final samples represent highly de-
formed airfoils that do not resemble the original airfoil
anymore.

Algorithm 1 Sampling procedure [21]

1: xT ∼ N (0, I);
2: for t = T, ..., 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+
√
βtz

5: end for
6: return x0

The fundamental aspect of DPMs is however in the
reverse process, where a neural network is used to
estimate the noise ϵ based on a noisy sample xt. If
this estimation is accurate, it allows to generate sam-
ples similar to those in the training dataset according
to Algorithm 1. In other words, this allows to generate
airfoils that are similarly distributed but not necessar-
ily identical to the airfoils in the dataset. Since this
process is stochastic, multiple generated airfoils will
not necessarily be the same even if the same starting
noisy sample xT is used. This is an advantage com-
pared to existing non-probabilistic generative meth-
ods, which are only able to generate a single airfoil
for any given features.

Algorithm 2 Training procedure [21]
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform(1, ..., T )
4: ϵ ∼ N (0, I)
5: Take gradient descent step on

∇θ||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

6: until converged

To obtain an accurate noise estimation ϵθ, a neural
network with parameters θ is trained using the proce-
dure outlined in Algorithm 2. It involves taking sam-
ples from the dataset q, calculating the noisy sam-
ple at some time step t, and then comparing the esti-
mated noise for this sample to the actual noise. Gra-
dient descent is then applied to the neural network
parameters based on the difference between the two,
slowly improving the estimation.
While generating new airfoils can be useful on its own,
the current procedure does not yet allow for the gen-
eration of airfoils with certain features. One way to
achieve this is to train multiple models, each trained
on a certain subset of the dataset. However, a more
general method to achieve conditional diffusion is to
add (a representation of) the features f of the airfoil as
additional inputs to the neural network, i.e. ϵθ(xt, t, f).
In the considered example, f = (CL, CD, CM ) so that

the sampling procedure in Algorithm 1 will generate
airfoils with the given lift, drag and moment coeffi-
cients.

2.2. Airfoil parameterization

An important aspect of the generation process is how
the airfoils are represented by the parameterization x.
Although the process results in airfoils similar to those
in the dataset, the parameterization can still affect
how well the model can be trained and how physical
the resulting airfoils are. For instance, previous works
on generative models for geometry generation have
used point clouds [22], voxel grids [23], meshes [24]
and signed distance functions [25] to represent ge-
ometries. A visualization of these parameterizations
on two-dimensional airfoils is shown in Fig. 1. The first
three are not continuous, so that the resulting geome-
tries only have a finite resolution. In addition, all these
methods are not inherently smooth, so that small dif-
ferences in the shape can lead to drastically different
aerodynamic characteristics.
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(d) Signed distance function

FIG 1. Different geometry parameterizations applied to
two-dimensional airfoils.

Therefore, an inherently smooth and continuous pa-
rameterization is used based on Bernstein polynomi-
als [26]. Apart from these two properties, this param-
eterization also allows to enforce "airfoil-like" geome-
tries that for example have rounded leading edges
and sharp trailing edges. Both the upper and lower
surface of the airfoil are modelled according to Eq. (2),
where N1 and N2 are general airfoil shape parame-
ters and Bn is a Bernstein polynomial of order n.
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The Bernstein polynomials are defined using equa-
tion Eq. (3), where Ai are the polynomial coefficients
and thus the geometry parameters of the airfoil.

(3) Bn

(x
c

)
=

n∑
i=0

Ai

(
n

i

)(x
c

)i (
1− x

c

)n−i

In other words, the samples considered in Section 2.1
take the form of Eq. (4) where Al and Au represent
the parameters for the lower side and upper side of
the airfoil respectively. Examples of generated airfoils
using this parameterization are shown in Fig. 2. While
the geometries are certainly airfoil-like, some geome-
tries are self-intersecting, have sharp leading edges
or round trailing edges.

(4) x = {Al,0, Al,1, ..., Au,0, Au,1, ...}

FIG 2. Randomly generated airfoils using Bernstein
polynomials with n = 6 coefficients and random
values for the shape parameters N1 and N2.

Nevertheless, using this representation provides
smooth and continuous airfoils, but it also signif-
icantly reduces the number of parameters that
represent the geometry compared to the earlier men-
tioned methods. As mentioned in the introduction,
design spaces are often unnecessarily large and can
benefit from reduced representations, termed latent
spaces. This is also the fundamental thought behind
latent DPMs [27], which first convert the parameter
space x to a reduced latent space x̂. As a result,
both the forward and reverse process occur in much
lower-dimensional spaces which can significantly
improve the computational cost of the method.
While the Bernstein parameterization in Eq. (2) can
also be seen as a form of latent space, typically the
mapping of the original space to the latent space is
learned by means of an autoencoder [28]. Similar
techniques have already been applied to generative

methods for airfoil geometries [3], but it is important
to note that using a latent space does not necessar-
ily solve the issues of continuity and smoothness. In
the present work, the additional use of a latent space
is not considered since the Bernstein design space
is already significantly reduced compared to standard
discretization. In fact, compressing the design space
even further might actually pose problems because
DPMs rely on some concept of "noise". When the de-
sign space is too compressed, even randomly sam-
pled sets of parameters lead to a physical airfoil. As a
result, it may become hard to distinguish the original
airfoils at t = 0 and the noisy airfoils at t = T .

2.3. Dataset description

Before going into detail on how the dataset itself is
generated, it is important to discuss the choices in
filtering or conditioning features. In the considered
case, conditioning only occurs for the lift, drag and
moment coefficients. Any other features that are not
included as conditioning variables and may thus vary
freely, such as the thickness or camber of the airfoil.
If airfoils with unreasonable values for these features
are included in the dataset, unfeasible airfoils may be
generated. Therefore, it is important to filter these air-
foils out of the dataset before training. Another option
is to leave the dataset untouched and to simply con-
dition the model on all relevant features, although this
must be combined with optional or range-based con-
ditioning to allow features to vary when they do not
need to be constrained. However, this option is not
investigated in the present work.

(0.36, 0.012, 0.046) (0.62, 0.008, -0.003) (0.47, 0.011, 0.015)

(0.52, 0.011, -0.022) (0.57, 0.012, -0.002) (0.63, 0.013, -0.031)

(0.51, 0.009, 0.037) (0.71, 0.018, -0.050) (0.56, 0.012, 0.008)

(0.76, 0.016, -0.061) (0.68, 0.009, -0.032) (0.46, 0.021, -0.035)

FIG 3. Subset of airfoils in the dataset along with their
features (CL, CD, CM ).

In general, filtering should not be done based on
features that are also used to condition the model.
For example, removing airfoils with negative lift co-
efficients from the dataset when conditioning on the
lift coefficient may seem logical. However, due to the
strong generalization capabilities of neural networks
even "bad" geometries may provide information to
the model on how to generate "good" geometries.
For this same reason, the choice is made to not use
the airfoils in the UIUC airfoil dataset [29] as it only
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includes optimized airfoils, so that it may not include
geometries matching more rarely desired features.
Instead, the dataset of airfoils is generated by sam-
pling the parameters in Eq. (4) uniformly. In particu-
lar, the airfoil shape is set to N1 = 0.5 and N2 = 1.0
for NACA-like airfoils with rounded leading edges and
sharp trailing edges. Furthermore, Bernstein polyno-
mials of order 6 are chosen for both the upper and
lower side, resulting in a total of 11 parameters since
the first lower and upper coefficient are set equal for
continuous curvature at the nose. All parameters are
sampled in the range [−0.5, 1.5] while Al,0 and Au,0

are sampled in the range [0.3, 1.0] to force am min-
imum leading edge radius. After generation, airfoils
with self-intersecting surfaces are removed. Exam-
ples of resulting airfoils are shown in Fig. 3.
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0.1 0.0 0.1
CM

0.00

0.25

0.50

0.75

1.00

C L

0.1 0.0 0.1
CM

0.02

0.04

0.06

C D

FIG 4. Distribution of the features of the airfoils in the
dataset.

Afterward, XFOIL [30] is used to simulate the aero-
dynamics of the airfoils. Although this is a relatively
low-fidelity method, the approach can be extended
to higher-fidelity methods without any changes
to the methodology. The airfoils are discretized
to 100 cosine-spaced elements and simulated at
Re = 1 × 106 and α = 5° using otherwise default
settings. To remove outliers, the Mahalanobis dis-
tance is calculated for each point in the feature space
and any points above the 99.5th distance percentile
are removed. The resulting distribution of features is
shown in Fig. 4. In total, 1,000 airfoils are entered into
the dataset along with their corresponding features.

2.4. Model and training setup

The dataset is split into 600 samples for training, 200
samples for validation and 200 samples for testing.
Furthermore, both the samples and the features are
z-score normalized based on their values in the train-
ing set. For the forward and reverse process, the vari-

ance βt is linearly scheduled from 1 × 10−3 to 0.2 in
a total of T = 1000 diffusion steps. A visualization
of the forward process is given in Fig. 5 in both the la-
tent and physical space, confirming the assumption in
Section 2.2 that the Bernstein parameterization alone
compresses the design space to an extent that the
airfoil at t = T is not very noisy (or out-of-distribution).

-1
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t = 0

-1
0
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t = 200

-1
0

+1

t = 400

-1
0

+1

t = 600

-1
0

+1

t = 800

-1
0

+1

t = 1000

FIG 5. Forward process in the physical and latent
space. The physical space is shown in terms
of the geometry, while the latent space is shown
with a scatter plot of the Bernstein coefficients.

The neural network used for the noise estimator ϵθ =
(x̃t, t̃, f̃) consists of 4 layers with 32 neurons each.
The tanh activation function is used for each layer ex-
cept the output layer. Here x̃ are the normalized pa-
rameters, t̃ = t/T is the normalized time and f̃ are
the normalized features. Note that the noise estima-
tor has the same output size as the number of airfoil
parameters, which is 11. The neural network archi-
tecture is visualized in Fig. 6.

11xN

1xN

3xN

11xN

32xN 32xN 32xN 32xN

tanh tanh tanh tanh

FIG 6. Architecture of the neural network used for the
noise estimator ϵθ, with N the batch size.

For training, the Adam optimizer [31] is used with a
learning rate of 1 × 10−4. The batch size is set to
64 and training is performed until the loss on the val-
idation set does not improve anymore. In a nutshell,
the model is trained to effectively predict the noise in
the parameters given the time step and desired aero-
dynamic features, implicitly learning aerodynamics in
the process. By iteratively subtracting this estimated
noise, the corresponding geometry slowly evolves to
one with the matching features.
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3. RESULTS

After training, the model can be used in the reverse
process as described in Algorithm 1. An example of
this process is shown in Fig. 7 and some resulting
airfoils are shown in Fig. 8. The generated airfoils are
smooth and satisfy the requirements and constraints
imposed in Section 2.3, covering two of the four main
objectives in the introduction. Nevertheless, some of
the airfoils are nontypical because certain structural
constraints have not been considered.

-1
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t = 1000
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+1

t = 200

-1
0

+1

t = 0

FIG 7. Reverse process in the physical and latent
space.

The two objectives that remain are showing that (a)
diverse candidate designs can be generated and (b)
that the generated airfoils are unique and thus not
identical to airfoils samples in the training dataset. But
before doing so, it is important to quantify how well the
aerodynamic features of the generated airfoils match
the desired features.

(0.60, 0.015, -0.002)
(0.70, 0.009, -0.011)

(0.49, 0.011, 0.002)
(0.49, 0.011, 0.004)

(0.52, 0.011, 0.036)
(0.64, 0.011, 0.009)

(0.44, 0.008, 0.050)
(0.43, 0.008, 0.054)

(0.62, 0.011, -0.029)
(0.66, 0.011, -0.038)

(0.69, 0.009, -0.033)
(0.71, 0.008, -0.035)

(0.39, 0.009, 0.027)
(0.40, 0.010, 0.025)

(0.64, 0.010, -0.011)
(0.70, 0.011, -0.021)

(0.59, 0.008, 0.018)
(0.57, 0.008, 0.021)

(0.57, 0.010, -0.018)
(0.55, 0.010, -0.014)

(0.65, 0.010, -0.009)
(0.66, 0.011, -0.009)

(0.49, 0.009, 0.033)
(0.56, 0.009, 0.021)

FIG 8. Examples of generated airfoils with their desired
features and actual features (CL, CD, CM ).

3.1. Airfoil accuracy

To quantify this accuracy of the model, the aerody-
namic features of the 200 airfoils in the test set are
taken and used to condition the generation of new

airfoils. The resulting average Root Mean Squared
Error (RMSE), Root Median Squared Error (RMdSE)
and the Mean Absolute Percentage Error (MAPE) of
the features are shown in Table 1. While the aero-
dynamic features of the generated airfoils are fairly
accurate, there is certainly room for improvement.

TAB 1. Errors for the different features quantified using
varying metrics. MAPE for CM is not shown be-
cause its range is zero-centered.

Feature CL CD CM

RMSE 9.3e-2 7.8e-3 1.7e-2
RMdSE 3.0e-2 8.4e-4 6.4e-3
MAPE 13% 11% -

Note that despite the smoothness of the airfoils, the
present approach still suffers from inherent aerody-
namic nonlinearities and modeling errors of the cho-
sen solver. To illustrate this, consider the two airfoils
in Fig. 9. While the airfoils are nearly identical, their
aerodynamic features are significantly different. This
may explain the large difference between the mean
and median errors in Table 1; the model may some-
times produce a seemingly correct geometry, but due
to the aerodynamic nonlinearities and modeling errors
the corresponding features might deviate significantly
leading to a skewed error distribution.

0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.0
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(a) CL = 0.23, CD = 0.0092 and CM = 0.067

0.0 0.2 0.4 0.6 0.8 1.0
0.1
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(b) CL = 0.31, CD = 0.011 and CM = 0.043

FIG 9. Two airfoils with similar geometries but vastly
different aerodynamic features. Airfoil (a) is
taken from the dataset and airfoil (b) is a slight
modification of this airfoil.

One important aspect to take into account is that the
error in the features may depend on the values of
the features themselves, since the model is gener-
ally worse at generating airfoils for features that are
less well represented in the training set. For exam-
ple, the distribution in Fig. 4 shows that the density
of the samples is not uniform in the feature space.
In particular, the sample density for higher CD val-
ues decreases. If the errors are separated by a CD

threshold as done in Table 2, the error in the drag co-
efficient almost increases tenfold. Therefore, it is rec-
ommended to make the dataset more uniform or to
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weigh the samples by their local feature density in fu-
ture work. Interestingly, note that the lift and momen-
tum errors are less affected due to the strong gener-
alization properties of neural networks.

TAB 2. Feature errors for different regions of drag coef-
ficient values.

Feature CL CD CM

RMSE (CD < 0.01) 7.7e-2 1.1e-3 1.7e-2
RMSE (CD > 0.01) 9.8e-2 9.1e-3 1.8e-2

3.2. Airfoil uniqueness

To show that the generated airfoils from the features
in the test set are unique, they are compared to the
closest airfoils in the training dataset. Fig. 10 shows
that while the generated airfoils might resemble the
types of airfoils in the training dataset, they are gen-
erally not identical.

Generated airfoil
Closest airfoil in training set

FIG 10. Examples of generated airfoils and their closest
airfoils in the training set.

Note that naturally, the distance to the nearest airfoils
depends on the number of airfoils and resulting fea-
ture density of the samples in the dataset. If more air-
foils are included, the resemblance of generated air-
foils to airfoils in the training set will increase. While
this does not mean that the generated airfoils are in-
correct, as is shown in Table 3 for a model trained
on a larger airfoil dataset, it does make less sense to
use DPMs as the geometries might as well be inter-
polated using simpler methods. However, when using
higher-fidelity CFD techniques to quantify the features
of airfoils it is unlikely that the datasets are this large.

TAB 3. Errors for the different features when training a
model with 64 neurons per layer on a training
dataset consisting of 6,000 airfoils.

Feature CL CD CM

RMSE 5.8e-2 7.3e-3 8.0e-3
RMdSE 9.5e-3 3.7e-4 2.0e-3
MAPE 7% 8% -

Regardless of the solver used, it becomes harder to
achieve high feature density when the number of fea-
tures increases due to the "curse of dimensionality".
In the present case only three features are consid-
ered, but other features such as thickness, camber,
area as well as full polars may be considered. Neural
networks in general are known to be robust to the
curse of dimensionality [32] and DPMs in particular
are good at generalizing high-dimensional features
to produce novel samples. Therefore, increasing
the number of features remains an important line of
future work.

3.3. Airfoil diversity

An advantage of generative methods is that they can
nearly instantly generate new geometries if require-
ments change. As mentioned in the introduction, this
is especially useful in the context of multi-disciplinary
optimization procedures, where requirements and
constraints might evolve during due to their multi-
objective nature. For this purpose, it is beneficial if the
model can generate diverse geometries for the same
desired features because it allows to have multiple
starting points for the optimization procedure.

(0.58, 0.010, 0.024) (0.58, 0.010, 0.027) (0.64, 0.010, 0.009)

(0.57, 0.009, 0.026) (0.53, 0.008, 0.036) (0.58, 0.009, 0.025)

(0.57, 0.017, 0.018) (0.62, 0.011, 0.016) (0.57, 0.011, 0.026)

(0.60, 0.011, 0.022) (0.51, 0.008, 0.041) (0.57, 0.009, 0.026)

FIG 11. Generated airfoils for CL = 0.6, CD = 0.01
and CM = 0.02.

Fig. 11 shows the geometries that are generated for
the same set of desired features, showing a diverse
set of airfoils. Note that apart from small derivations
of the same airfoil, the samples also contain differ-
ent "classes" of airfoils altogether. This is an advan-
tage compared to non-probabilistic methods, which
can only output one airfoil that is often of just one
class. Nevertheless, it is important to keep in mind
that that these airfoils do not necessarily have the
same features as desired due to the inaccuracies de-
scribed in Section 3.1.

4. CONCLUSION

All in all, the results show that diffusion probabilistic
models provide an effective method for direct aero-
dynamic shape design. By combining them with a
field-specific latent space, they allow for the genera-
tion of smooth, diverse and unique airfoils. Further-
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more, they allow to impose requirements and con-
straints easily through conditioning and filtering of the
dataset. However, we acknowledge that there are
certain gaps to be further explored. For example,
the options for conditioning and filtering should be ex-
panded, and in particular future work should also con-
sider structural requirements. In addition, the choice
of model architecture and latent space representa-
tions should be further explored. Lastly, the effec-
tivity of the method should also be tested with high-
fidelity methods, as they can be even more sensitive
to small changes in the design space. Nevertheless,
the present work provides a starting point for future
work on using DPMs for aerodynamic shape design.
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